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A simultaneous finite difference solution of the nonlinear Cosserat fluid jet equations for a 
semi-infinite jet emanating from a circular nozzle is presented. The problem is treated as time- 
dependent with a small amplitude periodic excitation of the velocity at the nozzle. Solutions 
for the jet radius and velocity are computed up to the breakoff point where the radius becomes 
zero or the absolute value of the velocity exceeds a chosen maximum value. It is found that 
when the dimensionless frequency of the excitation, w, satisfies w < 1, the disturbance wave 
grows in amplitude as it propagates downstream until it finally breaks the jet. The breakoff 
point depends on the frequency and amplitude of the excitation, the jet velocity, and the 
viscosity of the fluid. When w > 1 the disturbance is stable and therefore no jet breakup 
occurs. Even for the unstable frequencies high viscocity can appreciably dampen the growth 
of the disturbance. For w ( 1 and low viscosity the jet breaks up into main drops of twice the 
nozzle diameter and for certain conditions, small, so-called satellite drops are shown to form 
between the main drops. The results are compared with results from perturbation solutions of 
the same equations due to Bogy [IBM J. Res. Develop. 23 No. 1 (1979) 87-92; Phys. Fluids 
22, No. 2 (1979); 224-230; J. Appl. Mech. 45 (1978) 46994741. 

1. INTRODUCTION 

The Cosserat fluid jet equations derived by Green et al. [6] and Green [7] have 
been studied by Bogy [l-5] and Caulk and Naghdi [ 19, 211. The perturbation 
solutions [2,3] provide a useful guide to this work, where our purpose is to present a 
finite difference (FD) solution of the one-dimensional nonlinear Cosserat jet 
equations given in Green [7] for a viscous fluid with surface tension. 
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The FD solution of these equations is not easy. In fact the computational effort is 
quite large if we hope to accurately predict the jet breakoff point and drop formation, 
since we have to use a very line space-time mesh. Thus the mesh step in the direction 
of the jet must be extremely small compared to the length of the column of liquid 
from the nozzle to the breakoff point. The problem is further compounded by the 
presence of space derivatives of up to fourth order and mixed derivatives of up to 
third order. Furthermore we have to deal with a singular region at the jet breakoff 
point, where the radius goes to zero and the velocity and certain derivatives become 
very large. 

It is well known in numerical analysis that one of the least obvious tasks in FD 
methods is the introduction of the additional boundary and/or initial conditions 
which have to be added into some schemes to render them executable. Also difficult 
is the treatment of singular points, such as corners, crack tips, and in this case the jet 
breakoff point. Ilan [lo] discusses these tasks in connection with FD schemes for the 
problem of elastic wave propagation in a quarter plane, where a corner singularity 
and additional boundary conditions are treated. Because of the high order difference 
equations required to get suitable solutions more information is required at the nozzle 
and downstream than the known boundary conditions produce for the problem. As 
will be discussed later we resolved this by making use of results from the perturbation 
solution of the same equations due to Bogy [2] or by making some reasonable 
assumptions. 

Guided by results from preliminary schemes we had to derive higher-order 
accurate schemes to deal with the singular region near the jet breakoff point. Recently 
a high-accuracy compact FD technique has been used [ 12-151 in the solution of 
PDEs in which higher spatial accuracy is achieved without using more grid points. 
The technique introduced by Kreiss (see Orszag and Israel [ 151) treats functions and 
their derivatives as unknowns at the grid points and results in a lower matrix system 
to solve, e.g., a tridiagonal system instead of a pentadiagonal system for the same 
accuracy. However, this technique works well only with explicit schemes and where 
no mixed derivatives are involved. When used with implicit schemes for improved 
stability a block tridiagonal system results, which may not be easier or less time 
consuming than the equivalent pentadiagonal system it replaces (see Hirsh [ 121). 
Because of the complexity of our equations and the presence of mixed derivatives we 
obtained higher spatial accuracy by the traditional approach of taking more grid 
points to approximate the derivatives and solving pentadiagonal and heptadiagonal 
matrix equations. 

Time-dependent computational techniques for inviscid flows have been the subject 
of many research papers. It is now generally accepted that such techniques can work 
very well as long as the flow is continuous. However, in problems of practical interest 
discontinuities and singularities do exist and are in fact often the most interesting 
features of the flow. In such problems it is often useful to introduce artificial viscosity 
to smear out discontinuities, as explained by Moretti and Salas [ 16 1. In the same 
reference they discuss the use of real and artificial viscosity from a numerical 
standpoint. Here both inviscid and viscous schemes are investigated. 
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In the simultaneous FD solution of the Cosserat equations we were faced with 
difftculties with computer memory requirements and costs. One of the equations is 
numerically very cumbersome since it has 17 terms, some of them with high and 
mixed derivatives. For the case of a fast jet (large Weber number) with a very small 
perturbation amplitude of the velocity at the nozzle, the breakoff point is relatively 
far downstream. Since the disturbance grows downstream from the nozzle a long jet 
must be finely discretized; and since the disturbance is periodic in time the 
computation has to be carried out for many cycles of the input excitation at a very 
small time step. Thus with this line space-time mesh required for a good solution we 
can easily use up the entire core memory of most machines with CPU time running 
to several minutes. However, for conditions under which the jet breaks up near the 
nozzle good solutions can be obtained in a very short CPU time. 

As will be discussed in a later section, stability analyses for high order PDEs of 
complicated form are very difftcult and are usually not carried out. Instead, FD 
schemes consistent with the PDEs are derived and conditions for which they are 
stable are determined by numerical experimentation. 

2. THE COSSERAT FLUID JET EQUATIONS 

The straight circular jet equations presented in Green [ 71 were written in terms of 
dimensionless radius $(z, t) and axial velocity u(z, t) (z and t are the dimensionless 
axial coordinate and time) in Bogy [ 1 ] as 

where X and Y represent the surface tension and viscosity terms, respectively, and 
have the forms 

in which W and R represent the Weber and Reynolds numbers given by 

w- pad . 

T ’ 
R=pav, 

P ’ 
(3) 

In these equations p is the constant mass density, T is surface tension, p is the fluid 
viscosity, a is the jet radius, and u0 is the nominal velocity of the jet at the nozzle. 



FINITE DIFFERENCE FLUID JET SOLUTION 297 

We wish to obtain the solution of (1), (2) on the semi-infinite jet region z > 0 when 
the boundary conditions at the nozzle z = 0 are 

$(O, 4 = 1, u(0, t) = 1 + 6 cos ot. (4) 

A well-posed problem also requires z),(O, t) as well as a like number of downstream 
boundary conditions, but these are not known a priori. We start the computation with 
the initial conditions 

q% 0) = 1, u(z, 0) = 1. (5) 

In order to use finite differences we lay a uniform space-time mesh on a finite 
length, L, of the jet. The mesh step along the jet in the z-direction will be referred to 
as h and the time step as k. Let i and j be the integer indexing variables along z and 
t, respectively; then 

z; = (i- 1)h; tj = (j - 1 )k; L = (N- 1)h; LB=(NB- l)h, 

i = 1, 2 ,..., N, j = 1, 2,..., 
(6) 

where z,+, is the end mesh point on the jet of length L and L, is the initially unknown 
length of jet from the nozzle to a breakoff point B caused by the growth of the distur- 
bance from the nozzle (See Fig. 1). 

We will adopt the notation &,j = f(zi, tj) to represent the value of the function f at 
the mesh point P(i, j). 

FIG. 1. Jet and space-time mesh. 
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3. FINITE DIFFERENCE (FD) SCHEMES 

3.1. Scheme A. One-Step Five-Point Spatial Averaging: Inviscid Case 

(i) FD Formulae for Derivatives 

To avoid using the same symbol for the finite difference equations and the PDEs 
(1) we introduce two functions, r(z, t) and U(Z, t), assumed to be infinitely 
differentiable in z and t. Later, they will be identified with 4 and v, respectively. Then 
for the point P(i, j) we have the following five-point central difference formulae for 
the space derivatives. 

(rZ)r=r;,j=i 
I 

~Ti-*,j-~ri-i,j+~ri+,,j-~ri+l.j 9 

I 

1 

(r,,)p’r{l,j=F I 

1 4 5 4 1 
-12ri-2,j+5ri-1,j-Tri,j+5~itl,j-12~itZ.j 3 

I (7) 

(r,zz)p~r~j=$- -~ri-2,j+ri-I,j-ri+l,j+~ri+z.j 
I I 

(and similarly for u). 

For the first derivatives in time we use 

(r,), -ii,j=k(ri,j+* -ri,j) 

(and similarly for u). 

(ii) Finite Difference Equations 

(8) 

We identify r with 4 and u with v and make the following approximations in the 
first of (l), 

(9) 

where we have used the familar Crank-Nicolson averaging between two time levels 
for 4, so as to obtain the corresponding implicit finite difference equation (FDE hen- 
ceforth) 

alijri-z,j+l + blijri-l,j+L +clijri,j+I +dlijrit,.j+, +elijri+z,j+, =Rjij, 
i=3,4 ,..., N-2, (10) 
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where 

a,ij =A,; b,ij = -8Aij; c,~~ = 2h3ri j; d,, = 8A,, 

e,ij = -A,; R,, = ri,jc,ij - 12hAijr:,j - kh3ri,jui,j, 

A..=%r. .u. 1J 12 1.J 1.J’ 

(11) 

For the second of (1) we make the approximations 

cut>, * ( xui j; (Uz>P 

(UI,Z)P = ; C"X\ + ui'lj+ 1); ("zt)P CZ i (":,j+ 1 - u:,j); (",,t)p E $ ("y, j+ I - u:!,j), 

VP =: uij; Gt>p z r:,j; (hZ>P . z rilj; @zzr)~ z Cl(i; 4p M ri.,iT 

(12) 

where again we have used the Crank-Nicolson averaging for the velocity space 
derivatives so as to get the implicit FDE 

a2iiui-2.>+ I f b2ij’J- I,j+ 1 f CzijUi.j+ 1 + d2ijUi+ 1 j+ , + e2ij~i+2 j+, = R,,, 

i = 3,4, 5 ,..., N - 2, (13) 

where 

(I,ij = 3, - Cij t Dij $ E, + Fij + G,, 

b,,=-8B, + 8C,- 16D,- 8Eii- 16Fij- 2Gii, 

C2i.j = h” + 3ODij + 3OFij, 

d,, = 88ii - 8C, - 16Dij + 8Eij - 16Fii t 2Gij, 

e2ij = -Bi.j + Cij + Di,j - E,j + Fij - Gij, 

R2ij = h6ui,j - 12hBijuj.j - 12hC,uj,j + 12h’D;juy,,j 

-12hE,t& - 12h2Fiju;,,j + 2h3Giju;;,j + kh6Xij, 

and where 

(14) 

B..=kh’ I, 24 u,.,; Ci,j= J$ri,jr;.j; Dii= $ri,iui.jr{.j. 

5 

Eij = !&ria,jri,iuia.j; Fji= $ry.j; G..=khl f. 
(15) 

I, 32 ’ r.rr,., 
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and we recall that X, stands for all the surface tension terms in (2) with the 
derivatives taken from (7). 

3.2. Scheme B. One-Step Seven-Point Spatial Averaging: Inviscid Case 

(i) FD Formulae for Derivatives 

For the point P(i, j) we now use the following seven-point central difference 
formulae for the space derivatives: 

3 
+~ri+~.j--ri+2.i+~ri+i.j 3 20 I 

(and similarly for u). 

The first derivatives in time are given by (8). 

(16) 

(ii) Finite Dlflerence Equations 

For the first of (1) we make the same approximations as in (9) but with r:,.i and 
uiql from (16). The corresponding FDE is 

alijri-3,jtl + blijri-z,j+l + Clijri-l,j+l + dlijri.j+l + elijri+l,jtl 

+ fiijritz.j+l + glijrit3,jtl =Rlijy i = 4, 5, 6 ,..., N - 3, (17) 

where 

a,ij = -A,; b,, = 9A,; clij = -45A,; d,, = 2h3ri,j, 

elij = 45A,; f,ii = -9A,; glij =A,, 

R,, = 2h3rZj - 60hAijri,j - kh3ui,/rfsj; A..=kh2r, ,u, v 60 l., r.,. 

(18) 

For the second of (1) we use approximations (12) but with space derivatives from 
(16) to get the FDE 

azijui-3,j-t 1 + b*ijui-z,j+ 1 + CzijUi-l,j+ 1 + dzijui.j+ 1 + ezijui+ I,j+ 1 

+ LijUi+2,j+l + gzijui+3,i+l =RZij, i = 4, 5, 6 ,..., N - 3, (19) 
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where 

U,ij = -Bij + C, - Dij - E, - F, - G,, 

b,, = 9Bii - 9C, + y D, + 9E, + ; F, + 8Gij, 

czii = -45B, + 45Cii - 1350, - 45Eii - 135Fii - 13G,, 

d,, = h6 + 2450, + 245F,, 

e,ij=45Bij-45Cij- 135D,+ 45Ei,- 135Fi.i + 13Gii, 

& = -9B, + 9C, + F D, - 9E,, + $ Fi,i - 8Gii, 

g2i.i = Bij - Ci,i - D, + E, - F, + G,y 

R2ii = h6ui,j - 60hBiiu;,j - 60hCiju;,j $ 90h2Dijuj’,/ 

- 60hEijU:,j - 90h’FijUtj + 8h3GijU{‘(i + kh6Xi,i, 

(20) 

and where 

B, = 
kh5 

C, = & ri,jr:,j; 
kh4 

120 ui..i ; Dij = 360 ri,jr:,jUi,j, 

kh5 
(21) 

E, = 480 ri,jr;,juj,j; F, = & rfVj; Gij = g uisjrf3j 

and we note that X, now represents all the surface tension terms (2) with the 
derivatives taken from (16). 

3.3. Scheme C. Two-Step Five-Point Spatial Averaging: Viscous Case 

(i) FD Formulae for Derivatives 

The five-point central difference formulae for the space derivatives are exactly the 
same as those in (7) but with the following addition for the fourth velocity derivative. 

(Uzzzr)p s U’(‘j= $ (Ui-z,j-4ui-,,j + 6ui,j- JUi+l,j + Ui+2,,j/ a (22) 
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The first derivatives in time are now given by 

1 3 
(rl)P=ii,j=k Trij-2r,,j-, +iri.j-* 

I ’ I 
3 

(‘JP 3 fii,j= Y& i”i,j+ 1 - ui,j- *I* 

(23) 

(ii) FD Equations 

In this scheme we first compute the velocity values in order to be able to compute 
the radius by backward differences. We now make the following approximation in the 
second of (I), 

where the velocity space derivatives are now averaged between three time levels. The 
resulting FDE is 

a2ijui-2,j+l + b2ijUi-l,j+l + c2ijui,j+* + d2jj"i+l,j+l t e2ijuj+,,j+l 

= R,ij, i = 3, 4 ,..., N - 2, (25) 

where 

a2ij = B, - C, -D, + E, - F, + G,, 

b,, = -8B, + 16C, + 20, - 4E, + 8F, - 16G,, 

czij = ih6 - 3OC, + 6E, + 30G,, 

d,, = 8B, + 16C, - 20, - 4E, - 8Fi,, - 16G,, 

e,ij = -B, - C, t Dij + Eij + Fij t Gij, 

R,, = fh6ui,j+l - 12hBij(u;,j + uiqj- ,) - 12h2Cij(u;‘.j + u;‘,~- ,) 

- 2h3Dij(uj:: + u;yj-,) - h4Eij(u$ + u$ 1) - 12hFijrj,j 

- 12h2Gi.ju’,‘.j + kh%,, 

(26) 
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and where 

5 
B, = $ 

I 
6r! ui,j + a r:,ju{,j - --LL 
Rri,j 

, 

kh4 Cij=36 
I 

3r!*. ri jryj 3 ri jr: j 

~+~-R-zUi,j 

E,, = kh*rf j 
IJ 

-3s 

F, = g riqjri,j, Gij= f&r&, 

(27) 

and again we recall that X, represents all the surface tension terms with the radius 
space derivatives given by (17). 

Next we make the following approximation in the first of (l), 

with r;,j and u:,~ from (7) and ii,j from (23) to get the implicit FDE 

alijri-*,j + blijri-,,j + clijri,j + d,ijri+l.j + elijri+*,j=Rlijv i = 3, 4 ,..., N - 2, 

(29) 

where 

a,ij=Aij; b,,=8A,; Cl, = 3h3 + kh3ui,j, 

elij= -A,; R Ii, = h3(4ri.j- 1 - ri,j-z); A..=kh2~. 
V 6 I,J ’ 

4. IMPLEMENTATION OF THE FD SCHEMES 

(i) Preamble 

The computational effort in this problem can be quite large even on machines such 
as the CDC 7600. Because of the nonlinearity of the equations the matrix coefficients 
for the schemes have to be computed at every point on the space-time lattice and this 
consumes most of the computing time. Therefore the computation of these coefficients 
needs to be as efficient as possible. In order to keep an accurate record of the number 
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of cycles of the input periodic excitation at the nozzle we found it convenient to 
divide one cylce into exactly p partitions and compute the time step by 

k = 2zfwp. (31) 

A good resolution of a cycle requires p > 12. With k so computed we know that 
after np (n = 1, 2,...) time steps exactly n cycles of the input excitation will have gone 
downstream from the nozzle. As the breakoff point is approached we can examine the 
solution and then advance it by, say, half a cycle. This is particularly useful in 
studying the details of drop formation a few cycles before the jet breaks. 

It is well known in numerical analysis that some schemes in FD methods require 
more boundary and/or initial conditions than are prescribed for the problem to be 
solved. When confronted with this situation one has to estimate the additional 
conditions by some means as discussed by Ilan [lo] and Gottlieb and Turkel [ 111. In 
this problem the presence of high space derivatives in the second of (1) necessitates 
estimation of additional nozzle conditions and the two-step scheme requires more 
initial conditions to implement. The details of how this was accomplished are given 
below for the three schemes. 

It is relevant at this point to mention that no stability criterion was obtained 
analytically for any of the schemes. Usually for linear PDEs one can quickly 
establish a relation between k and h under which a scheme is stable. A few 
researchers have carried out theoretical stability analyses for nonlinear equations. 
Hirt ] 171 describes a stability analysis based on the examination of truncation errors 
which is applicable to both linear and nonlinear equations. However, such analyses 
can be applied only to relatively simple nonlinear equations. Many researchers have 
abandoned the analytical approach and instead concentrate on numerical experiments 
for establishing the stability conditions for nonlinear problems. For example, Miller 
[ 181 describes an experimental method based on parallel calculations for initial value 
problems in which two sets of initial conditions differing by a small perturbation 
parameter are used and the resulting solutions are continuously monitored. For time 
dependent (and reversible) problems Miller [ 18 ] also suggests running the scheme 
first forward in time from the initial conditions and then backward in time to the 
initial conditions. In this work conditions for stability were established by numerical 
experimentation. More will be said about this later. 

(ii) Scheme A 

From the FDE (13) it can be seen that values of u must be known at two grid 
points on both ends of the jet for all time. One of them, at the nozzle, is the given 
velocity boundary condition in the second of (4), the other one must be estimated. 
Since we are using live points to average the derivatives it is reasonable to assume 
that, for small h, 

u 2,j= Ul,jr j = 2, 3,4,. .., (32) 
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where u,,~ is obtained from the boundary condition (4). To ease our conscience we 
make the following correction at every time step, 

u2,j = fC"l,j + u3.jh 

where u~,,~ is computed implicitly by a pentadiagonal matrix system using the values 
of r and u at the previous time step and the end conditions. 

Far downstream we can safely assume that 

u,v j = u,- , j - , -1, j = 2, 3,..., (34) 

where the length, L = (N= 1)/z, of the jet we start with is considerably longer than 
the length, L, = (NB - l)h, of the jet from the nozzle to the expected breakoff point. 
The first of (1) has only first space derivatives and therefore one should seek a 
scheme which needs only one condition at each end. Unfortunately, the tridiagonal 
schemes or explicit schemes that would satisfy this criterion are among the schemes 
unsuitable for this problem. Several such schemes were tried, and most were found to 
be unsuitable because of numerical instabilities or instabilities caused by the solution 
itself as the disturbance propogated downstream. In some cases the scheme appeared 
to be stable but gave an incorrect solution. These unsuitable schemes are discussed in 
Shine [20]. The pentadiagonal FDE (10) is the lowest-order scheme which gave 
meaningful results. Having made assumption (32) on the velocity w-e can make a 
similar assumption on the radius, since they are related by the continuity equation. 
Therefore we assume 

r2.j=rl.j' j = 2, 3,..., (35) 

where rl,J is set equal to the first boundary condition (4), followed again by the 
correction 

'2,j = fCrl,j + r3,j)- (36) 

Far downstream, where the jet is still undisturbed, we again set 

r N,j= ‘N-l,i- - 1, j = 2, 3, 4 ,... . (37) 

We remark here that for fast jets (high Weber numbers) and small perturbation 
amplitude 6, at the nozzle, assumptions (32) and (35) are expected to be good since 
the jet is observed experimentally to come off the nozzle with almost zero slope (i.e., 
$,(O, t) = 0) so that the continuity equation also gives v,(O, t) = 0. Good results are 
obtained in these case even without the associated corrections (33) and (36). 

The given initial conditions (5) are sufficient to get a joint scheme started. 
Therefore by setting j= 1 in (10) and using the first of (4) together with (35) and 
(37) we can compute all the values of ri (i = 3,4,..., N - 2) at j = 2 by solving the 
resulting pentadiagonal matrix equation. The classical fast recursion method for 
solving such an equation was used; see Conte and Dames [9] and Shine [20]. Then 
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(13) is used to compute all the ui,* by again solving a pentadiagonal system and 
making use of the end conditions (32) and (34). We then increment j by one and 
return to (lo), then return again to (13) and increment j. Shuttling between the two 
equations at every time step we can advance the solution simultaneously by solving 
the two pentadiagonal systems (10) and (13) from the initial conditions, subject to 
the end conditions, which we pick at every time step as we march forward in time. 
The solution is advanced in time until the disturbance, which moves downstream 
growing in amplitude, causes the radius to become just less than zero at a point 
downstream or until the velocity exceeds a chosen absolute maximum value, 
whichever comes first. We throw away these last values of r and u and take the 
previous values as our approximate FD solution for 4 and v for a disturbance 
growing from the nozzle to the breakoff point. 

(iii) Scheme B 

It is clear from (17) and (19) that we need two additional conditions for r and u at 
the nozzle to implement this scheme, which has higher spatial accuracy than 
Scheme A. The perturbation solution in Bogy [2] was used for obtaining the 
additional conditions. This approach gives 

v,(O, t) = 6A, sin cot; v,JO, t) = -6A, cos ot, 

#,(O, t) = 6A, sin wt; #;JO, t) = -6A, cos wt, 
(38) 

where 

A, = 0.524871528; A, = 0.275 103636, 

A, = -0.262435764; A, = -0.275330604, (39) 

for o = 0.525: W = 250. 

By use of first order forward FD approximations to the derivatives in (38) we can 
estimate the additional conditions as 

u~,,~=u,.~+ h6A, sin(w(j- l)k), 

u,.~ = 2~,.~ - u,,.~ - hZ 6A, cos{o(j - l)k), 

r2,,i = 1 + h 6A, sin{w(j - l)k), 

r3,j=rz.j- 1 -h26A4cos( w(j- I)k), 

j = 1) 2, 3 ,... . 

Far downstream, where the jet is still undisturbed, we again set 

(40) 

24 N,,/ = UN _ 1 ,,i = uh’ - Z.,j = 1.0, 

r N.,i = rN ,.i = r,v 2.j = 1.0. 
(41) 
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The given initial conditions are enough to get this scheme started. The solution is 
obtained by shuttling between (17) and (19) at every time step as described above by 
solving the heptadiagonal matrix systems. The recursion method was extended to do 
that in Shine [20]. 

(iv) Scheme C 

The additional end conditions on r and u required for this scheme are the same as 
those for Scheme A. However, we also need two additional initial conditions. Since 
we start with an undisturbed jet at t = 0 it follows that 

qm, 0) = Mz, 0) = $Az, 0) = 03 

uz(z, 0) = u,&, 0) = V&, 0) = V,&i 0) = 0, 

from which the first of (1) gives 
4f(Z, 0) = 0 

(42) 

(43) 

so that 

ri,z = ri,, = 1, i = 1, 2 ,..., N, (44) 

where ri , . is determined from the initial condition in the first of (4). Also (42) in the 
second of (1) gives 

u,(z, 0) - ~u,,t(z, 0) = 0. (45) 

Using the approximations in the second of (8) and the sixth of (12) with U:!.,i taken 
from (7) we can solve (45) for ui,Z. 

Thus with two starting rows for u and r this scheme can be implemented. Here, 
however, we start with the FDE (25) and shuttle between it and (29) at every time 
step by solving pentadiagonal matrix equations. 

5. NUMERICAL RESULTS AND DISCUSSIONS 

5.1. Stability 

As mentioned earlier the mesh size for stability was determined by numerical 
experimentation. We arbitrarily chose a small value of h (the largest is of course 
determined by the frequency, w, of the excitation at the nozzle) and then ran the 
schemes for only a few time steps for various values of k (the largest value of which 
is also determined by w). The computed values of r and ZJ near the nozzle were 
studied and compared with the nozzle conditions. If there was a significant difference 
it was a sure sign that large numerical instabilities would quickly develop at the 
nozzle before we could complete even one cycle of the input excitation. This was 
confirmed for some of the cases by running the scheme for a longer time. For 
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example, Scheme B develops instabilities similar to Fig. 2 for very small values of h, 
say, 0.05, regardless of the value of k, when the old values of r are used in computing 
the velocity values, but it is always stable when the latest values of r computed by the 
first of (1) are used in the computation of the velocity values. 

It was therefore possible to quickly predict when nozzle instabilities would occur 
by this trial and error method. However, numerical instabilities that are induced by 
the solution itself cannot be so easily predicted; the scheme has to be run until such 
instabilities develop as the disturbance moves downstream. For example, Fig. 3 shows 
a case in which numerical instabilities develop after 6 cycles of apparently good 
solution; for the conditions shown the wave is supposed to grow for about 1 I cycles 
before it breaks the jet at z = 130 as shown in Fig. 7a. 

0 40 80 120 160 

2 nondimensional distance from nozzle 

o.oi- 1 I --I 

0 40 80 120 160 

2 nondimensional distance from nozzle 

FIG. 2. Radius and velocity Profiles. 6 = 0.01, w = 0.525, W= 250. p = 100 (k z 0.12), h = 0.5; 
typical instabilities at nozzle. 
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z nondimensional distance from nozzle 

0 40 80 120 160 
z nondimensional distance fran nozzle 

FIG. 3. Radius and velocity profiles. 6=0.01, o =0.525, W= 250, p= 100 (k~0.12), h =0.5, 
I = 6.33 input cycles. Numerical instabilities caused by solution. 

As the disturbance moves and grows downstream the jet remains undisturbed 
ahead of it. This was a very helpful observation because it enabled us to cut the 
computing time by a factor of about 2 by making use of the fact that after exactly p 
time steps one cycle of the excitation at the nozzle has gone downstream. So’at t = 0 
we start with an undisturbed length of jet of about two wave lengths and after exactly 
p steps we increment the length by a value slightly longer than the wave length, and 
compute for p steps and then increment the length again and so on. In this fashion 
the solution is computed using a staggered length. Of course with this technique we 
have to know roughly where jet breakoff is going to occur. This was estimated by 
computing with the largest mesh size possible or from the results of the perturbation 
solutions of these equations in Bogy [2,3]. 

58 l/38/3-4 
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5.2. EJiect of Mesh Size 

For reasonable resolution of the periodic disturbance the frequency determines the 
coarsest possible space-time grid. With a coarse mesh a very rough solution of the 
problem is obtained in which only the main drops are shown to form and a breakoff 
point too near the nozzle is predicted. This is shown in Fig. 4, where z8 N 110 instead 
of the correct value of zg = 130 for the conditions indicated. The accurate breakoff 
point can be calculated from results given in Bogy [4], known to agree with 
experiment. It is also related to the number of time steps by 

2nt, 
zg = - 

0 ’ 

2.0 

2 

0.0 I I I I A_ .L-mmI-. ~~. 
0 40 80 120 160 

z nondimensional distance from nozzle 

(46) 

FIG. 4. Scheme A: Radius and velocity profiles just before jet breakup. 6= 0.01. w =0.525. 
w=250. p= 12 (kz I .O). h = 1 .O. 1, = 1 I .5 input cycles. 
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where t, is the time to breakoff, measured in number of cycles of the input nozzle 
excitation. If the accuracy is insufficient due to the coarseness of the mesh for the 
scheme used then zB shown in the computed radius profiles differs significantly from 
what it should be according to (46). This seems to be an inherent difficulty with 
simultaneous FD solution of more than one time-dependent equations. The space-time 
mesh has to be made very small to minimize the lag or lead of the values computed 
by one of the equations over those computed by the other equations. A good check 
on the mesh size is the calculation of a breakoff point that agrees with (46). 

As the mesh is refined we, expectedly, get better and better solutions, the breakoff 
point converges to the correct value, and small satellite drops begin to form between 
the main drops as the breakoff point is approached. Also less distortion (due to u and 
the derivatives of $ and v becoming very large) of the leading cycle occurs as it 

0 40 80 120 160 

z nondimensional distance from nozzle 

0 40 80 120 160 

z nondimensional distance from nozzle 

FIG. 5. Scheme A: Radius and velocity profiles just before jet breakup. 6= 0.01, w = 0.525. 
W = 250, p = 100 (k z 0.12). h = 0.5. I, = 11.49 input cycles. 
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b ’ 
30 60 90 120 150 
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FIG. 6. Scheme A: (a) Radius profile just before jet breakup. 6 =O.Ol, w = 0.525, W= 250, 
p=200 (kzO.06), h=0.05, fB= Il.15 input cycles. (b) Velocity profile for previous radius profile. 
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Scheme B: (a) Radius profile just before jet breakup. 6 = 0.01, w = 0.525, W= 250, 
p = 200 (k z 0.06), h = 0.05, t, = 11.37 input cycles. (b) Velocity profile for previous radius profile. (c) 
Comparison of results from Scheme B with the perturbation solution in Ref. [3]. 

reaches breakoff. And of course as we refine the mesh for the same length of jet the 
computing times increases. 

Scheme A. Figures 4, 5, and 6 show the results of this scheme with the mesh 
progressively refined. It is clear that the accuracy of this scheme is not good enough, 
even with the finest mesh used, to predict the correct breakoff point or give a smooth 
solution for the leading cycle near breakoff. The joint accuracy of the scheme is 
shown in Shine [20] to be O(k, h*) and this is not good enough to handle the large 
derivatives that occur near breakoff. Even at h = 0.05 and k z 0.06 breakoff is shown 
in Fig. 6 to be at zB = 127 instead of zB = 130 for the conditions indicated, and the 
leading cycle is still noticeably distorted. 

Scheme B. This scheme is shown in Shine [20] to be O(k, h4) accurate and.Fig. 7 
shows the results at h = 0.05 and k z 0.06. The breakoff point zB = 129 shown is 
very close to the correct value of 130. Also a smooth solution for the leading cycle at 
breakoff is obtained. 

Scheme C. The previous two schemes are inviscid and at breakoff they tend to 
predict very large velocity values and sometimes even negative values. It is for this 
reason that we investigated inviscid flows by this viscous scheme. Since it is second- 
order accurate in time the breakoff point is predicted reliably for reasonably fine 
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mesh. Also with this scheme we studied the effect of viscosity on the growth of the 
disturbance as in Fig. 15. 

5.3. General Results for the Problem 

(i) E#ect of Frequency 

The frequency, w, of the periodic excitation at the nozzle has an interesting effect 
on the propagation of the disturbance from the nozzle in that if o > 1 the generated 
wave is stable and therefore does not grow in amplitude, to break the jet, as 
illustrated in Figs. 8 and 9. However, if w < 1 the resulting wave grows in amplitude 
until it finally breaks the jet at a definite point downstream, as shown in Fig. 7a. For 
the same unstable o < 1, the breakoff point will depend on other parameters as 

0 40 80 120 160 

z nondimensional distance from nozzle 

2.0 

a 40 80 120 160 

z nondimensional distance from nozzle 

FIG. 8. Scheme A: Radius and velocity profiles. 6= 0.01, o= 1.6, W= 250, p= 32 
h = 0.125, t = 33 input cycles. 

(k~0.12). 
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0.0 1 i I 1 I I I I 
0 20 40 60 70 

z nondimensional distance from nozzle 

0.0 1 I I I I I I-.~ 
0 20 40 60 70 

z nondimensional distance from nozzle 

FIG. 9. Scheme A: Radius and velocity profiles. 6 = 0.01, w = 1.4, W= 9, p = 50 (k z 0.09), 
h = 0. I, t = 9 input cycles. 

discussed below. This effect of frequency on the wave propagation agrees with that 
obtained by perturbation analysis of the same equations by Bogy [4]. 

(ii) Drop Formation 

For the unstable frequencies the jet breaks up into main drops whose diameter is 
about twice that of the nozzle, as shown in Figs. 10-13. Formation of smaller drops, 
referred to in the literature as satellite drops, interspersed between the main drops is 
predicted for the fast jets when the space-time lattice is fine enough to resolve that 
behavior, as shown in Figs. 7, 11, 12 and 13. Again, similar results were also 
obtained from the Cosserat equations by Bogy [2,3] using perturbation techniques to 
solve the equations. 



0 35 70 105 130 

z nondimensional distance from nozzle 

a z nondimensional distance from nozzle 

0.0 2 
0 35 70 105 140 
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FIG. 10. Scheme C: (a) Radius profile just before jet breakup. 6 = 0.02, w = 0.525, w= 250, 
R = 500, p = 240 (k z O.OS), h = 0.05, t, = 9.75 input cycles. (b) Velocity profile for previous radius 
profile. 
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FIG. 11. Scheme C : (a) Radius profile just before jet breakup. 6 = 0.01, o = 0.525. W = 250. 

R = 500, p = 240 (k z O.OS), h = 0.05, I, = 12.33 input cycles. (b) Velocity profile for previous radius 
profile. 
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FIG. 12. Scheme C: (a) Radius profile just before jet breakup. 6 = 0.0035, w = 0.525, W = 250, 
R = 500, p = 240 (k =: O.OS), h = 0.05, 1, = 16.77 input cycles. (b) Velocity profile for previous radius 
profile. 

319 



1.6 

1.2 

0.8 

0.4 

0.0 -J 

50 100 150 200 250 300 
z nondimensional distance from nozzle 

230 240 250 260 270 0 
z nondimensional distance from nozzle 

= 0.4- 

0.0: 
0 50 100 150 200 250 300 

b 
z nondimensional distance from nozzle 

FIG. 13. Scheme C: (a) Radius profile just before jet breakup. 6 = 0.001, w = 0.525, W = 250, 
R = 500, p = 240 (k =: 0.05), h = 0.05, t, = 22.33 input cycles. (b) Velocity profile for previous radius 
profile. 
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(iii) Effect of Amplitude of Excitation 

As the amplitude, 6, of the velocity perturbation at the nozzle is reduced the jet 
breaks farther from the nozzle, as shown in Figs. 10-13. Also the amplitude of the 
disturbance is known to affect the behaviour of the satellite drops. For very small 6 
they are rear merging whereas for larger 6 they are forward merging as calculated by 
the third perturbation solution of Bogy [3] and demonstrated experimentally by 
Pimbley and Lee [S]. However, for the schemes presented here and the finest space- 
time grid we used this behaviour of the satellite drops was not predicted. This is 
possibly because the results at the downstream and of the leading cycle at breakoff 
are not very reliable. This is a singular point where the derivatives of 9 and U, and u 
itself, are very large. For a numerically reliable prediction we should obtain the 
correct behaviour of these drops one cycle before breakoff point. A considerable 
effort was put into trying to achieve this but we were limited by computing time and 

2.0 

z nondimensional distance from nozzle 

0 4 a 12 16 20 24 
z nondimensional distance from nozzle 

1.6 

0.8 

0.0 
10 20 30 40 

z nondimensional distance from nozzle 

FIG. 14. Scheme B: Radius and velocity profiles just before jet breakup. 6= 0.01, w=O.525, 
IV= 1. p=240 (k-0.05), h=O.I, f,= 1.75 cycles. 
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FIG. 15(a). Scheme C: Radius and velocity profiles just before jet breakup. 6 = 0.01, w = 0.525, 
W=250, R = 100.0, p= 100 (ks0.12), h=O.S, t,= 15.84 input cycles. 

cost. The finest mesh used was h = 0.05, k = 0.05 with two time refinements to 
k =: 0.025 and k z 0.0125 for the last two cycles. The result with Scheme B is the 
same as in Fig. 7 and with Scheme C the same as in Fig. 11. No value of h smaller 
than 0.05 was used because then the computing time would be prohibitive. 

Fig. 7c shows a comparison over the last cycle before breakoff of the results 
obtained by Scheme B with those obtained by the third perturbation solution in Bogy 
[3]. The difference between the two solutions is less nearer the nozzle. It is possible 
that this difference is merely due to the fact that different problems were solved in the 
two instances. The FD solution was for an initial-boundary value problem in which 
the initial jet was of uniform flow. The perturbation solution was for a steady time 
harmonic problem, i.e., without initial conditions and transients. 
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FIG. 15(b). Scheme C: Radius and velocity profiles. 6=0.01, w=O.525, W= 250, R = 25.0, 
p = 100 (k-0.12), h = 0.5, I= 23 input cycles. 

(iv) E&ct of Jet Velocity 

As we decrease the Weber number (or the velocity at the nozzle) the jet breakoff 
point occurs nearer the nozzle. This is illustrated by Figs. 7 and 14. This also agrees 
with the perturbation solution of Bogy [4]. 

(v) E&a of Viscosity 
Viscosity appreciably affects the breakoff point of the jet, as illustrated in Figs. 11 

and 15a-c. It is evident that, other parameters being kept the same, the growth of the 
disturbance from the nozzle is considerably slowed as R decreases (i.e., as the fluid 
becomes more viscous) until a point is reached where the higher viscosity can 
dampen the growth of the disturbance and therefore practically no jet breakup occurs. 
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FIG. 15(c). SchemeC: Radius and velocity profiles. 6= 0.01, 0=0.525, W= 250, R = 3.125, 
p = 100 (k z 0.12), h = 0.5, I = 23 input cycles. 

The effect of viscosity on the growth rate of the disturbance has also been studied in 
the context of the Cosserat theory by Caulk and Naghdi [ 191. 

6. CONCLUSIONS 

Simultaneous numerical solution of the nonlinear Cosserat fluid jet equations is 
quite possible using several FD schemes. For the problem of a semi-infinite jet 
emanating from a nozzle with a harmonic excitation of the velocity at the nozzle and 
with the finest space-time lattice that was reasonable to use, good solutions were 
obtained. 

The small-amplitude periodic perturbation of the velocity is transformed into a 
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wave, of the same wavelength, which grows in amplitude if the frequency, CO, is less 
than 1 until it finally breaks the jet at a specific point downstream. If w > 1 the 
disturbance is stable and therefore does not grow to break the jet. For the unstable 
frequencies the jet breakoff points, for various conditions, and the size of the main 
drops were accurately predicted compared to results of the perturbation solution of 
the same equations due to Bogy [2, 31 and experimental results due to Pimbley and 
Lee [8]. 

Faster jets (higher Weber numbers) are shown to break farther from the nozzle 
than slower jets. Disturbances with smaller amplitudes grow more slowly and break 
the jet farther from the nozzle. Higher viscosity makes the jet break farther from the 
nozzle until a point is reached where the higher viscosity makes the growth rate so 
small that for all practical purposes no jet breakup occurs. 

While the disturbance is growing downstream the dimensionless axial velocity of 
the jet is shown to be nearly equal to the initial nominal value (deviates no more than 
f5 %) but it very rapidly blows up as the breakoff point is approached. It is this 
behaviour of the velocity which causes most of the difficulties with the FD schemes 
at the breakoff region. 

Formation of small satellite drops interspersed between the main drops is well 
predicted for the fast jets. However, with the schemes presented in this work and with 
the finest space-time mesh used the correct behaviour of these drops near breakoff as 
influenced by changing the amplitude of the nozzle excitation is not as well predicted 
as in the third perturbation solution of these equations by Bogy [3]. The solution 
obtained here is more similar to the second perturbation solution in Bogy 121. 
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